BINN: A deep learning approach for computational mechanics problems based on boundary integral equations

نویسندگان

چکیده

We proposed the boundary-integral type neural networks (BINN) for boundary value problems in computational mechanics. The integral equations are employed to transfer all unknowns boundary, then approximated using and solved through a training process. loss function is chosen as residuals of equations. Regularization techniques adopted efficiently evaluate weakly singular Cauchy principal integrals Potential elastostatic mainly concerned this article demonstration. method has several outstanding advantages: First, dimensions original problem reduced by one, thus degrees freedom greatly reduced. Second, does not require any extra treatment introduce conditions, since they naturally considered Therefore, suitable complex geometries. Third, BINN on infinite or semi-infinite domains. Moreover, can easily handle heterogeneous with single network without domain decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A computational method for nonlinear mixed Volterra-Fredholm integral equations

In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative   examples are provided to demonstrate the applicability and simplicity of our   scheme.    

متن کامل

A Computational Meshless Method for Solving Multivariable Integral Equations

In this paper we use radial basis functions to solve multivariable integral equations. We use collocation method for implementation. Numerical experiments show the accuracy of the method.

متن کامل

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach

The Galerkin ®nite element method (GFEM) owes its popularity to the local nature of nodal basis functions, i.e., the nodal basis function, when viewed globally, is non-zero only over a patch of elements connecting the node in question to its immediately neighboring nodes. The boundary element method (BEM), on the other hand, reduces the dimensionality of the problem by one, through involving th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2023

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2023.116012